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netization, thus working against the antiferromagnetic 
exchange as well as the anisotropy forces. 

With regard to the distribution of the ferromagnetic 
spin density, it is difficult on the basis of these few 
reflections to assign any unique interpretation to our 
results. What is clear, however, is that the ferromagnetic 
component has a significant different spin density dis
tribution from the antiferromagnetic component. In 
other words, the spin density in this compound must be 
thought of as a vector rather than a scalar function, 
that is, varying spatially in direction as well as magni
tude. It may very well be that this is a special case of a 
more general phenomenon that occurs whenever spin-
orbit coupling is present. Because of the smallness of 

THE dynamics of an electron in a two-dimensional 
periodic potential and a constant magnetic field 

perpendicular to the plane of motion is discussed. Using 
symmetry-adapted functions, defined previously, an 
exact one-dimensional Schrodinger equation for this 
"two-dimensional Bloch electron in a magnetic field" 
has been derived. Since no approximations were intro
duced in this derivation, our one-dimensional equation 
contains all the information for describing the dynamics 
of the problem. By contrast, in all other existing 
methods, such as the effective-mass approximation, the 
equations are approximate. 

It is well known that the energy spectrum of a free 
electron in a magnetic field consists of two parts: one 
part is connected with the motion in the direction of 
the magnetic field and is continuous; the other part 
comes from the motion in the plane perpendicular to 
the magnetic field and is discrete. The effective-mass 
approximation1-3 shows that one may expect this same 
division of the energy spectrum to hold also in the case 
of a Bloch electron in a magnetic field. Since quantum 
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the effect, it is impossible in the present case to get 
much of a detailed picture of such a spin density, other 
than to show that it exists and probably resides in 
directions away from the antiferromagnetic super-
exchange bonds. It is planned to investigate the 
phenomenon further in other antiferromagnets where 
the canting angle is larger, such as the rare-earth 
orthoferrites. 
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effects in solids are connected with the discrete part of 
the energy spectrum, it is of great interest to investigate 
the behavior of a Bloch electron in the plane perpen
dicular to the external magnetic field. 

To derive the one-dimensional equation, symmetry-
adapted functions for a Bloch electron in a magnetic 
field4 are used. In the case of "rational" magnetic 
fields5,6 these functions are given by 

\pfk(r) = exp{ik*r} exp| —i[j-\ K2-r)—Ki-rf 
I \ 4TT /N J 

Xwik(r+ja2)--. (1) 

Here j takes values from 0 to N— 1, I is the magnetic-
band index, Ki and K2 are unit-cell vectors of the 
reciprocal lattice, 

k=m1Ki/N+m2K2/N9 0<m,m2<l (2) 
4 J. Zak, Phys. Rev. 134, A1602, A1607 (1964). 
5 The rationality of the magnetic field is denned here by the 

relation 'R»aiX&2/(hc/\e\)=n/Ni where H is the magnetic field, 
ai, a2 are the unit cell vectors, hc/\e\ is the elementary fluxon, 
and n, N are integers. This relation differs by a factor of 2 from 
the relation (42) in Ref. 4 and is more convenient, because it 
leads to representations of dimensionality N for both even and 
odd N. [See also E. Brown, Phys. Rev. 133, A1038 (1964) and 
Ref. 6.] 

6 J. Zak, Phys. Rev. 136, A776 (1964). 
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and the function wu satisfies the conditions 

tt>zk(r+ai) = wjk(r) (3) 

wik(r+Na2) = exp{i»Ki* r} wZk(r). (4) 

The two-dimensional Schrodinger equation for a 
Bloch electron in a magnetic field is 

{[_VJt{e/c)kJ/2m+V(x)U(x) = E^{t). (5) 

Let us find the equation that the function w>k(r+ia2) 
in Eq. (1) satisfies7 (the index I is omitted here because 
it does not enter the equation). Since the function wk 

is periodic in direction ai [[relation (3)] it can be ex
panded in a Fourier series 

wk(r+ya2) = X) Cm[K2- 0 + i a 2 ) ] exp{fwKi*r}. (6) 
m 

From Eq. (4) we obtain the following relation between 
the coefficients: 

C^inCKa. ( r+ia 2 +Wa 2 ) ] = Cw[K2. ( r+ ia 2 ) ] . (7) 

This recurrence formula allows one to find all the coeffi
cients when n coefficients, say, Co, Ci, • • •, Cn_i, are 
known. Expanding the periodic potential V(r) in a 
Fourier series 

F(r) = £ Vm(Krt) exp{fwKi.r}, (8) 
m 

by substituting the symmetry adapted function (1) into 
the Schrodinger equation (5), and by using relations (6) 
and (7) we obtain n coupled equations for defining the 
coefficients CTO|j^=0, 1, • • •, n—l~]. These coupled equa
tions will not be written down here8; instead we treat 
the special case for n=l. In this case only one coeffi
cient, say Co, has to be defined and its equation is as 
follows (we put j—0 because the energy does not de
pend on this index): 

\—[pyK2+hk yKA 
L2m\ 2TTN J 

f 2TTN \"] 
+v[P^rzr^y)fo(y)=EC0(y). (9) 

\ EA /J 
Here K\ and K2 are unit vectors in the direction of the 
unit-cell vectors Ki, K2, respectively, 

y=K2-r, py=K2'p, (10) 

F ^ ^ T ^ = S Vl^ exH ^77" • (11) 
\ hKxK2 I i [ fiK2\ 

For a discussion of Eq. (9), it is more convenient to 
perform a unitary transformation and to introduce the 
dependence of k into the potential energy. This is 

7 A similar method was used in the paper by P. G. Harper, Proc. 
Phys. Soc. (London) A68, 879 (1955). However, Harper uses dif
ferent starting functions which are not specified according to the ir
reducible representations of the magnetic translation group. It is 
therefore doubtful whether these functions can be solutions of 
Schrodinger's equation. 

8 The case of the coupled equations will be discussed in a future 
publication. 

achieved by the following transformation: 

f 2TT | f K2 1 
\l/(y) = exp\ itni py exp im2—y \C0(y). (12) 

[ %K2 \ I A^ J 

The final equation is 

\—(pyK2 yKA 
L2m\ 2TN / 

( 2irN 2TT 2TT\ - ] 
+ VI py m2—, y+mi— I M(y) = E\p{y) (13) 

\ %KXK2 Kt KjA 

or, according to definition (11) of the potential energy, 

1 / A IKXK2 „ \2 

— l p y K 2 -#iUW 
2m\ 2wN / 

( 27r\ 
+H VA y+mi—1 exp{—2irilm2} 

1 \ K2J 
( 2wN \ 

xMy+ / ) = ^ ( y ) . (13a) 

Equation (13), or (13a), is a one-dimensional dif
ferential-difference equation which replaces the two-
dimensional Schrodinger Eq. (5). For deriving Eq. 
(13), or (13a), we used the rationality condition on the 
magnetic field5 with n—\ 

R.aiXa2/(hc/\e\) = l/N. (14) 

Apart from condition (14) no other assumptions have 
been made. 

The energy spectrum that follows from Eq. (13), or 
(13a), is in agreement with the general description given 
in Refs. 4 and 6, and in the paper cited in Ref. 5. For 
a fixed k vector (fixed mi and m2), we get an infinite 
set of energy levels. If one ignores the dependence of 
the potential of its first coordinate, i.e., if one assumes 
from the beginning a one-dimensional equation,2 this 
set of energy levels will be discrete, because for very 
large y one can neglect V in Eq. (13) and one gets a 
simple harmonic-oscillator equation. This is no longer 
true when V depends also on py. In this latter case, the 
energy spectrum for a fixed k can be either discrete or 
continuous: for the discrete case the dependence of the 
energy on k will lead to a magnetic band structure or 
what is usually called Landau-level broadening6; the 
continuous case is more complicated and requires 
special investigation. 

The dependence of E on k is given through the de
pendence of the potential energy on k. Thus, the sym
metry of the energy as a function of the k vector is 
defined by the symmetry of the potential energy. 

Equation (13), or (13a), is very convenient for apply
ing a perturbation procedure when the potential energy 
can be considered as a small perturbation. Equation 
(13a) shows at once the orbits that will be coupled by 
the periodic potential, namely, those orbits will be 
coupled that are shifted by (2irN/K2)l, for any integer /. 
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Equation (13) [and also Eq. (13a)] becomes much 
simpler for the special case of cubic symmetry 

^fuc(q2+P2)+V(\p-m2ay Xq+m1a)^(q) = E^(q) (15) 

where 

o)=\e\ H/tnc, \q=y, (fr/\)p = py, 

\2 = fic/eH, \j,q]=-i. 

For a one-dimensional potential the energy spectrum 
of Eq. (15) will be independent of the particular co
ordinate upon which the potential energy depends. This 
is to be expected physically, because for a magnetic 
field perpendicular to the plane of motion both direc
tions x and y are equivalent. 

As an example, let us treat Eq. (15) for the potential 

V = Vo (cos27rx/a+cos27ry/a). (16) 
We have 

[iito)(q2+p2)+VQ CQs(2ir\p/a-2wtn2) 
+ VcCO$(2w\q/a+2>jrtn1)lf(q) = Ef(q). (17) 

Equation (17) looks very simple and is fully symmetric 
in q and p. I t can be called the Mathieu problem for a 
two-dimensional Bloch electron in a magnetic field. 

Because of the symmetry in q and p the potential 
energy of the Hamiltonian in Eq. (17) contains a 
diagonal part with respect to states of a harmonic 
oscillator. To find this diagonal part let us write the 
Hamiltonian H of Eq. (17) in terms of annihilation (y) 
and creation (^t) operators 

y=(q+ip)W, m 

y*=(q-ip)/^2. 
We get 

#o=—(yfy+yy*) 
2 

/ 7rN\ 
+ Vo expf J[cos27rmi+cos27rm2] 

(irN)s 

x£(-i)*-——/y, (19a) 
s=o (s!)2 

Vo / wN\ oo 
H'=—expf L Mrs{mim2) 

2 \ 2 / r^=o 
[(V27r/a)X]^s 

X yfrys, (19b) 
rlsl 

where N is given by relation (14), and 

MTS(mitn2) 

= ir+s exp(2iritni)+(—i)r+s exp(—2irimi) 

+ ( - l ) s exp(27riw2)+(--l) r exp(—2*TM»2). (20) 

Equations (19), (19a), and (19b) show the structure of 
the Hamiltonian: Ho is diagonal in the harmonic-
oscillator states, while H' has only off-diagonal elements. 
By neglecting H' in the Hamiltonian [Eq. (19)] we get 
the following energy spectrum: 

En
(0) =fiw(n+J) + Fo(cos27rwi+cos27rw2) 

XLn(*N) exp( - |7 rA0 , (21) 

where Ln(irN) is a Laguerre polynomial. Expression 
(21) gives a very simple description of the Landau-
level broadening and was also obtained by a perturba
tion treatment in Ref. 6. 

I t is interesting to note that by using Pippard's 
argument2 it is very easy to derive the magnetic break
down criterion1-2 from relation (21). To do this, let us 
evaluate the second term in Eq. (21) for large quantum 
numbers n (metals). The order of magnitude of this 
term can be found by using the asymptotic expression 
tor Ln(irN). We have 

F0(7riV^)-1/4(cos27rWi+cos27rw2). (22) 

According to Pippard,2 magnetic breakdown occurs 
when the broadening caused by the term [Eq. (22)] 
is smaller than itco 

fi^Wo^Nn)-^. (23) 

Since Vo^AE (the first Fourier coefficient of the po
tential Vo is of the order of the energy gap AE), and 
since both n and N are of the order of EF/^CO (EP is the 
Fermi energy), relation (23) leads to the usual magnetic 
breakdown criterion 

AE<(fia>EF)VK 
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